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Histogram and scatterplot models are often required for statistical inference. In the field of
petroleum engineering, stochastic simulation algorithms require, among other statistics, a model
for the histogram of the petrophysical attribute (porosity/permeability) being simulated. Often this
model is taken to be the declustered distribution of the sample data. When there are many data (say,
greater than 1,000), this histogram may be reasonably informed. Most often, however, the sample
histogram shows multiple sawtoothlike spikes that are not representative of the entire population;
the sample histogram must be smoothed. A simulated annealing-based procedure is proposed for
smoothing one-variable (univariate) histograms and two-variable scatterplots (bivariate histograms).
The smoothed histograms are constrained to the sample mean, variance, specified quantiles, and a
measure of smoothness. In the bivariate case, the distribution must be consistent with both marginal
histograms and can be additionally constrained to a linear correlation coefficient. Several examples
with real reservoir data are presented.
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1. INTRODUCTION

A model of the histogram or univariate distribution is
required for stochastic or geostatistical simulation. When
considering two variables, such as porosity and permeabil-
ity, a model for the scatterplot or bivariate distribution is
also needed. These distribution models must be inferred
from the sample data. In practice, however, there are often
too few sample data to describe the full range of values that
may be encountered in the population (reservoir).

Some modeling including smoothing is necessary because
assumptions must be made for extrapolation beyond the
smallest datum value (lower tail) and the largest datum
value (upper tail) and for interpolation between two con-
secutively ranked data. There is little advantage to smooth-
ing if the goal is to inform quantiles near the center of
the distribution (Sheather and Marron 1990; Silverman and
Young 1987). A need to define extreme low and high quan-
tiles provided added motivation for histogram and scatter-
plot smoothing.

A second motivation for smoothing is that sawtoothlike
spikes appear when there are few sample data. If more data
were available, these spikes would not likely appear; they
are an artifact of data paucity and should be smoothed out.

The problems of lack of resolution and spikes in the uni-
variate histogram become far worse in the case of a bivari-
ate histogram (scatterplot) due to the number of class prob-
abilities that must be informed. For example, if 100 classes
are required for the porosity and permeability histograms,
then 10,000 classes would be required for the bivariate his-
togram. There is rarely enough data to reliably inform the
bivariate histogram without modeling or smoothing.

A first conventional approach to smooth univariate and
bivariate distributions is to fit a parametric distribution
(such as a normal, lognormal, or power-law distribution)

to the sample data (Johnson and Kotz 1970; Scott 1992).
The parametric model then overcomes all problems related
to resolution and spikes in the sample histogram. The prob-
lem, however, is that real earth-science data can rarely be
fitted with simple parametric distributions.

A second approach is to replace each datum with a kernel
function (Scott 1992; Silverman 1986)—that is, a paramet-
ric probability distribution with a mean equal to the datum
value and a small variance. The smooth distribution is ob-
tained by integrating these kernel functions. The resulting
distribution does not in general (Jones 1991, 1993) simul-
taneously honor the mean, variance, and quantiles of the
sample data and may show negative values although the
variable is positive.

This article documents a procedure to smooth univariate
and bivariate histograms so that critical summary statistics,
that are deemed reliably informed by the sample data, are
reproduced. For example, data limits, the sample mean and
variance, certain quantiles (such as the median), linear cor-
relation coefficients, bivariate quantiles (for nonlinear be-
havior in the scatterplot), and measures of smoothness can
be imposed. The proposed methodology has several advan-
tages: (a) It is conceptually simple; (b) bounded variables,
such as volumetric concentrations, are handled quite natu-
rally; and (c) the approach does not introduce any bias in the
mean, variance, or shape when considering a highly skewed
distribution.

1.1 Notation
Although this article focuses on porosity ¢ and perme-
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Initial Random Values

0.001
Figure 1. The Ewolution of the Probabilities From Random to
Smoothed Probabilities: - - -, Intermediate (one-third finished); ——-, In-

termediate (two-thirds finished); . Final Values.

ability K, the approach is generally applicable to histograms
of any attribute(s).

The ¢ and K values are each modeled by a random vari-
able Z informed by n data values—z(u,).a = 1,...,n,
with u, being the location-coordinates vector for datum
«. The data values are often correlated with each other in
space (close values being more similar) and spatially clus-
tered in areas of relative importance (i.e.. zones of high
permeability), yet we require a histogram that is repre-
sentative of the entire area of interest. To obtain a rep-
resentative distribution, one approach is to assign declus-
tering weights whereby values in zones with more data
receive less weight than those in sparsely sampled zones.
The program DECLUS (Deutsch 1989; Deutsch and Journel
1992) provides an algorithm for determining such declus-
tering weights, The declustering weight assigned to each
datum location is denoted by w, with w, € [0,1] and
> _1@wa = 1. An equally weighted histogram would cor-
respond to w, = 1/n, for all a.

A histogram f(z) gives the probability of encountering
any z value for the attribute being studied. A cumulative
histogram or cumulative distribution function, cdf F(z), is
useful because Monte Carlo simulation proceeds by draw-
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ing from such cdf’s. The cdf F(z) can be modeled by, at
most, n step functions if all n data values 2(u,) are differ-
ent:

“(z) = Zu.rn-i(u,,:z). (1)
a=1

with w, € [0,1],3°"_, w, = 1, where i(u,; 2) is the indi-
cator datum, set to 1 if z(u,) < z, to 0 otherwise, and w,,
is the declustering weight attached to datum location u,,.

The problem of modeling a histogram is one of assign-
ing N probability values p;,i =1,...,] N, to evenly spaced
z values between the minimum z,;, and maximum z.,..
The minimum z,,;, and maximum z,,.. are chosen on the
basis of physical limits (e.g., 0 to 100%) or, in the case of
unbounded distributions, practical bounding limits.

In general, N > n; that is, the resolution is enhanced
in the modeling. In cases in which n is acceptably large,
there may still be a need to smooth the distribution to a
more continuous function. The challenge is to find a set of
pi.i=1,..., N, values such that the resulting smooth dis-
tribution is close to the original declustered data distribu-
tion and reproduces summary statistics such as the sample
mean, variance, and selected quantiles.

The problem of smoothing a bivariate histogram is one of
assigning NV, - N, probability values p; ;.i =1....,Ny:j =
1,...,Na, to evenly spaced z; (say, porosuty} and 2z
(say, permeability) values. The resulting smooth distribu-
tion should capture the important features of the original
data distribution and honor summary statistics deemed re-
liable, such as the smoothed marginal distributions, sam-
ple mean(s), variance(s), correlation coefficient, and selected
quantiles.

1.2 The Proposed Solution

The problem of finding the set of smooth univariate prob-
abilities p;,i = 1,..., N, or bivariate probabilities p; ;,i =
IS Nyi=1,...,1 N3, is solved with simulated annealing
(Journel 1993). An objective function may be constructed as
the sum of multiple constraints such as reproduction of the
sample mean, variance, selected quantiles, and minimiza-
tion of a smoothness measure.

The initial set of N probabilities p;,i = 1,..., N, is as-
signed randomly and then perturbed according to a standard
annealing approach [see Sec. 2 and Kirkpatrick, Gelatt, and
Vecchi (1983); Press, Flannery, Teukolsky, and Vetterling
(1986)] until an optimal set is found. Figure 1 shows an
initial set of randomly assigned probability values (N =
500), two sets of intermediate probabilities, and the final
smoothed probabilities. The computer program takes be-
tween | to 5 seconds on a Silicon Graphics Indy workstation
to arrive at the final smooth probabilities while reproduc-
ing the original sample mean, median, variance, 11 evenly
spaced quantiles, and imposed minimum and maximum
values.

There are other optimization techniques such as genetic
algorithms, threshold accepting, and steepest descent that
should give comparable results to those presented here. The
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remainder of this article documents the procedure in more
detail and presents several real examples.

2. SIMULATED ANNEALING

The essential feature of the method is the formulation
of the modeling problem as an optimization problem to be
solved with simulated annealing.

The global optimization technique known as simulated
annealing is based on an analogy with the physical process
of annealing. Annealing is the process by which a material
undergoes extended heating and is slowly cooled. Thermal
vibrations permit a reordering of the atoms/molecules to
a highly structured lattice—that is, a low energy state. In
the context of smoothing histograms, the annealing process
may be simulated through the following steps:

1. An initial histogram (analogous to the initial melt in
true annealing) is created by assigning a random probability
value for a series of regularly spaced z values.

2. An energy function (analogous to the Gibbs free en-
ergy in true annealing) is defined as a measure of difference
between desired features and those of the realization. For
example, one component of the energy or objective function
could be the squared difference between the mean of the re-
alization and a model mean. Another component could be
a measure of smoothness.

3. The probability values are perturbed by choosing a
pair of values (with indices i and j) and adding an incre-
mental value Ap to one and subtracting it from the other
(this mimics the thermal vibrations in true annealing).

4. The perturbation (thermal vibration) is accepted if the
energy is decreased; it is accepted with a certain probability
even if the energy is increased (the Boltzmann probability
distribution of true annealing). Technically the name “sim-
ulated annealing” only applies when the acceptance prob-
ability is based on the Boltzmann distribution (Kirkpatrick
et al. 1983). In common usage, however, the name “anneal-
ing” is used to describe the entire family of methods that
are based on the principle of stochastic relaxation.

5. The perturbation procedure is continued while reduc-
ing the probability that unfavorable swaps are accepted

Figure 2. The Smoothed Distribution Obtained by Fitting Two Gauss-
ian Distributions: , Two Normal Distributions; ——-, Kernel Smooth-
ing.
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(lower the temperature parameter of the Boltzmann distri-
bution) until a low energy state is achieved. A low energy
state corresponds to a smooth histogram model for the at-
tribute.

The objective function is defined as some measure of dif-
ference between a set of reference properties and the corre-
sponding properties of a candidate histogram. One advan-
tage of annealing, versus kernel functions, is the ability to
incorporate many different constraints into the histogram.

2.1 Updating

Annealing techniques rely on many perturbations to
achieve a final acceptable realization. This implies that each
component of the objective function must be quickly up-
dated after each perturbation.

For example, the mean value is

=3 non @
i=1

Consider the probability value at node j changing from p;
to p; = p; + Ap < 1 and the value at node ¢ changing from
pi to p; = p; — Ap such that p; > 0. The mean value is

updated by
Znew = 251 + Ap - 2j— Ap - z;. (3)

Very few arithmetic operations are required to update the
mean value.

2.2 Weighting Component Objective Functions

In general, the objective function O is made up of the
weighted sum of C' components

C
0="%" %0, @)
c=1

where v, and O, are the weights and component objective
functions, respectively. The component objective functions
measure how certain features of the simulated image dif-
fer from the desired control or reference properties. For
example, one component could be a measure of difference
between the variance of the smoothed model and the vari-
ance of the sample data, a second component could measure
reproduction of specific quantiles, and a third component
could measure the smoothness of the histogram.

Each component objective function O, could be ex-
pressed in widely different units of measurement. For ex-
ample, a component measuring variance departure may be
in units squared (>1,000), whereas a component measuring
the reproduction of a correlation coefficient may be quite
small (<.5).

The weights v, allow equalizing the contributions of each
component in the global objective function. Decisions of
whether to accept or reject a perturbation are based on the
change to the objective function,

AO = Onew = Oolds with

C
A0=Y" 1[0,

c=1l

C
== Ocqm] == ZVCAOc- (5)
c=1
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The weights v.,e = 1,...,C, are established so that, on
average, each component contributes equally to the change
in the objective function AQO. That is, each weight v, is
made inversely proportional to the average change in abso-
lute value of the component objective function:

1
v, = e=1,...,C. (6)

Ve [

In practice, the average change of each component |AO,|
may be numerically approximated by evaluating the average
change due to a certain number M (say 1,000) of indepen-
dent perturbations:

M

1
> {(m
|AO,| = i Y o™ -0,

m=1

e=1,....C (7

where |AO,| is the average change for component ¢, O.(:m] is
the perturbed objective value, and O, is the initial objective
value,

The overall objective function may then be written as

1 (¢}
O=m'zlyc'oc- (8)

The objective function O is normalized by its initial value,
0, so that it starts at 1.0.

3. HISTOGRAMS

Consider the problem of assigning N probability values
piyi = 1,.... N, to evenly spaced z values between given
minimum z,,;; and maximum z,,,.. The equal spacing of
the z; values is

Az = Jl,\r 5 {3max - 3mln}e 9)
with p; > 0 for all i = 1,...,N,z31 = 2zmia, and
ZN = Zmax. Lhe idea is to choose N large (100-500) so
that the resulting distribution can be reliably used for sub-
sequent stochastic/geostatistical simulation.

The final set of smoothed probabilities is established from
an initial set of probabilities by successive perturbations.
The perturbation mechanism consists of selecting at random
two indices i and j such that i # j and 4,5 €]1, N[. The
probability values at i and j are perturbed as follows:

(new)

 =pmt+Ap
pjlnaw} = p; — Ap

The incremental change Ap is calculated as Ap = .005 - U,
where .005 is a constant chosen to dampen the magnitude
of the perturbation (found by trial and error) and U is a
pseudorandom number U € [0,1]. Both p"™*’ and p{"**’
must be between 0 and 1; new pseudorandom numbers are
drawn until this condition is met.

If the initial p;,2 = 1,..., N, values are legitimate (i.e.,

pi € [0,1] for all i, and Z:\;Ip,- = 1), then any set of
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probabilities derived from multiple applications of this per-
turbation mechanism is also legitimate.

For simplicity, all perturbations that lower the global ob-
jective function (defined later as the weighted sum of com-
ponent objective functions) are accepted and all perturba-
tions that increase the objective function are rejected.

The following component objective functions have been
considered:

1. For the mean,

Om = [5 = m:]:’, (10)
where m is the target mean (from the data or specified by
the user) and z is the average from the smoothed distribu-
tion

(11)

N
zZ= Zp,- . 2y
=1
2. For the variance,
0, = [8* = 0?)?,

(12)

where o2 is the target variance (from the data or specified
by the user) and s? is the variance from the smoothed dis-
tribution

N
92=Zp,--zf—52 (13)
i=1
3. For a number of quantiles,
0= [Pi— F(z)P, (14)
i=1

where n, is the number of imposed quantiles, F; is the
smoothed cdf value for threshold z;, and F\(z;) is the tar-
get cumulative probability (from the data). For example,
the median porosity value of 12.5 would be specified as
F(z) = .5 and z; = 12.5. The cumulative P-probability
value associated with any = threshold can be calculated by
summing the p; values until the corresponding 2; value ex-
ceeds the threshold z; that is, first establish the index k
threshold value

2 — Zmin

k = integer portion of T

then the p value is computed as
(15)

4. The smoothness of the set of probabilities p;,i =
1...., N, can be measured by summing the squared differ-
ence between each p; and a smooth p; defined as an average
of the values surrounding i; that is,

N
0= lpi— 8%, (16)
=1
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GSLIB Data (29)
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Porosity Data (55)

Figure 3. Four Examples of Histogram Smoothing: Clockwise From the Upper Lefl, 29 Data Taken From GSLIB (Deutsch and Journel 1992), 55
Porosity Data, 243 Permeability Data, and 855 Permeability Data. All four datasets are unrelated.

where the p;.1 = 1,.... N, are the smoothed probability
values and p;.i = 1 ..... . N, are local averages of the p;
values

o

- 1
P¢=m Z

k=—nq.k#i

where ng is the number of values in the smoothing window
(say, 5-10), p; =0 forall i < 1, and i > N.

The global objective function is defined as the sum of the
four components.

O=Vp O+ Op 41 Og +v,- 0,4,

pi+k! T;=1,---,N, (17)

(18)
1.0,
08 ]

06 |

b
>

02|

Objective Function Value

e
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[

0 10000 20000 30000 40000 . 50000
Number of Perturbations
Figure 4. The Four Component Objective Functions (normalized to

start at 1.0) Versus the Number of Perturbations. The plot only goes to
50,000 perturbations, although the program was allowed to go to 250,000

at which time the quantile component (not yet 0 at 50,000) was .0087:

mean; ———, variance; ——-, smoothness; ---, quantiles.

"
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and the weights v,,, v, 1, and v, are computed such that
each component has an equal contribution to the global ob-
jective function (as defined previously). Note that additional
components could be added as necessary.

Examples

Figure 1 shows an initial set of randomly assigned prob-
ability values, two sets of intermediate probabilities, and
the final smoothed probabilities. Two conventional smooth-

Figure 5. The Smoothed Probabilities for a Smoothing Half Window
Varying From 1 to 20. In all cases the mean, variance, and 12 quantiles
taken from the 243 original data are-honored: ———, half window = 1;
, half window = 5; ---, half window = 10, —, half window = 20.
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F[;‘l ' ‘ il
-2.5 45

Figure 6. Five Sets of Smoothed Probabilities Obtained When Us-
ing Five Different Random Number Seeds. All other parameters were
unchanged.

ing approaches have also been applied to the same data:
The fit with two Gaussian distributions is shown in Figure
2, and the smoothed distribution using a Gaussian kernel
function is also shown in Figure 2 (p. 268). By construction,
the annealing-based solution honors the mean, variance, and
quantiles better than either conventional approach. The im-
portance of this depends on the application. Some consid-
erations for selecting a method include the following ques-
tions: (1) What is the smoothed distribution going to be
used for? (2) Are there physical reasons why the data should
follow a specified parametric model? (3) How important is
the skewness and fit in the tails of the distribution? The
annealing-based approach appears to be a flexible approach
that may be appropriate in many situations.

Figure 3 shows four additional sample histograms with
their smoothed counterparts. In each case, the smoothed
histogram contains 500 discretization points, the mean and
variance were taken from the data, and a smoothing window
(half width) of 10 was considered.

In all instances the final smoothed histogram honors all
the input constraints. That is, the smoothing was considered
finished when each component of the objective function
dropped below .001.

Figure 4 shows the evolution of the component objective
functions as the smoothing proceeds for the example of
Figure 1. The components go to 0 at different rates. Figure 1
shows how the set of probabilities evolves as the smoothing
proceeds.

Table 1. The mAD Statistic That Measures how Well the Smoothed
Distribution Matches the Underlying Reference Distribution
Smoothing technique Gaussian  Lognormal Exponential
Annealing-based 00188 00919 .00236
Kernel .00214 00851 .00379
Fitted parametric model .00148 .00408 .00118

NOTE: Results are shown for three reference-true distributions (Gaussian, lognormal, and expo-
nential) and for three smoothing tachniques (the annealing-based approach, a kamel approach,
and a fitted parametric approach using the cormect parametric model).

Figure 5 shows the smoothed distribution for smooth-
ing half windows of 1, 5, 10, and 20. In general, there are
no fixed guidelines about which is the best. An attempt at
optimizing the smoothing parameters on the basis of cross-
validation scores may be possible (Scott 1992). Significant
details may be lost if the distribution is smoothed too much.
On the other hand, artifacts of scarce data are preserved if
the smoothing window is too small,

The distribution model obtained by simulated annealing
is nonunique; a different random-number seed would lead to
a different series of perturbations and ultimately to a differ-
ent final set of probabilities. Figure 6 shows five smoothed
distribution models obtained from five different random-
number seeds. All five models appear very similar.

A small simulation study was carried out in an attempt to
quantify the performance of the annealing-based smoothing
methodology. The exercise consisted of smoothing distri-
butions of 25 sample values drawn at random from refer-
ence probability distributions. The values were smoothed
with the annealing-based approach presented previously, a
Gaussian kernel approach, and then by fitting the parame-
ters of the correct underlying parametric model. The mean
integrated squared error optimal value of (1.059n1/5)2 =
.31 for the kernel bandwidth was chosen.

Three reference distributions were considered: (1) the
standard Gaussian distribution, (2) a lognormal distribution
with a mean of 1.0 and variance of 4.0, and (3) an expo-
nential distribution with a mean of 1.0. In each case, 100
randomly chosen samples of 25 values were considered.

To quantify the performance of the smoothing algo-
rithms, the mean absolute deviation (mAD) for 100 prob-
ability values associated with evenly spaced = values from
the .05 quantile and the .95 quantile were calculated. These
mAD statistics are measures of difference between the
smoothed distributions and the underlying true reference
distributions. Table 1 shows the results. In all cases, know-
ing the correct parametric model yields the best result. The
annealing-based smoothing method outperforms the kernel
approach in two out of the three cases considered.

The documentation of a rigorous Monte Carlo study
would make this article too long; however, the results of
these three tests show that the simulated annealing smooth-
ing method yields reasonable results.

4. SCATTERPLOTS

Consider the problem of finding a set of smooth bivari-
ate probabilities p, ;.i = 1....,Ny,j = 1...., Ny, applied
to attribute z; (say, porosity) and attribute z, (say, perme-
ability). There are many unknowns in the bivariate case; for
example, if N, and N, are both 250, then the number of bi-
variate probabilities is Ny - No = 62,500. Given a smoothed
set of bivariate probabilities, the marginal univariate prob-
abilities are retrieved by row and column sums; that is, the
univariate distribution of z; is given by the set of probabil-
ities

Na
i=1
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i,
Lo

Figure 7. A Smoothed Scatterplot for 243 Porosity/Permeability
Data.

and the z; distribution by

Ny
P = Pij:
i=1

The approach taken here is to impose the already-smoothed
univariate distributions on the smooth bivariate distribution
model. The disadvantage of this approach is that more con-
sistent distribution models could be obtained by establish-
ing the bivariate distribution directly. The following advan-
tages are considered more important:

j=1....,;’\f2.

1. The problem of computing smooth bivariate probabil-
ities is easier once the marginal distributions are fixed. Oth-
erwise, up to eight additional constraints, four per marginal
as in Relation (18), would have to be added to the bivariate
problem.

2. There is often more data informing one or both
marginal distribution(s) than there are data pairs informing
the scatterplot. Smoothing the marginals first allows this
data to be easily accounted for,

The final set of smoothed bivariate probabilities is es-
tablished from an initial set of probabilities by succes-
sive perturbations. The perturbation mechanism consists of
selecting a bivariate index (i',") and considering a per-
turbation of pf:“".w ) = pu; + Ap, with Ap chosen such
that the candidate probability value (p(“ew)) is positive:
Ap = (U — .5) - pyryr, where .1 is a constant chosen to
dampen the magnitude of the perturbation (found by trial
and error) and U is a pseudorandom number U € [0, 1].

The physical constraint on the sum of the bivariate prob-
abilities

i=N; j=N3

PR T
i=1 j=1
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will be imposed indirectly through the constraint of consis-
tency with both marginal distributions, as shall be seen.
For simplicity, all perturbations that lower the global ob-

jective function (defined as the weighted sum of component
objective functions, given later) are accepted and all pertur-
bations that increase the objective function are rejected.
The following component objective functions have been
considered in the smoothing of bivariate distributions:

1. For consistency with the two marginal distributions,

i (ZPU) — P} 2

=1 3=}
N3 Ny 2
+Z[(Zp,-_,-)—p;] . (19)
j=1 =1

where p; is the smoothed marginal probability of z;, and
pj is the smoothed marginal probability of z;,; both p} and
p; are target values.

2. For the correlation coefficient,

O = [p — p']z, (20)
where p is the correlation coefficient from the bivariate
probabilities and p* is the target correlation coefficient
(from the data or specified by the user).

3. For several bivariate quantiles

O = Y_ |B— F(zrjy 2%, @21

i=1

where n, is the number of imposed quantiles and F'(z1,, 22,)
is the ith target cumulative probability. The cumulative P-
probability value associated with any z;,,zs, pair can be
calculated by summing the p; ; values for all z;, 2, threshold
values less that the threshold values z; , z3,.

4. The smoothness of the set of probabilities p; ;.1 =
1,...,N1,5 = 1,..., N>, may be quantified by summing
the squared difference between each p; ; and a smooth p; ;
defined as an average of the values surrounding i; that is,

Ny Ny

= Vs Z Z [pi.s — Pl

i=1 j=1

where the p;;,i = oy S [ SR
smoothed probability values and p; ;,i = 1,...,N1.j =
1,...,Na, are local averages of the p; ; values. These local
averages are defined by values within an elliptical window.
The major axis of the elliptical window is in the direction
of greatest correlation and the anisotropy of the window is
based on the anticipated degree of correlation; that is,

i) (ZL}(ZI. = ET)Q)
tan T ey e——

1—p*2,

(22)

angle from Z; axis =

anisotropy

where 2, 2058 =104 ,n, are the available data pairs, zZ7
is the corresponding average of z;,7; is the average of 2,
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Figure 8. Four Conditional Distributions Through a Smoothed Scat-
terplot.

and p* is the anticipated (target) correlation coefficient. The
number of points in the smoothing ellipse is an input pa-
rameter.

Examples

Figure 7 shows a smoothed scatterplot for 243 poros-
ity/permeability data pairs. The smoothed porosity and per-
meability distributions, shown below the porosity axis and
to the left of the permeability axis, were calculated first. The
bivariate distribution was then smoothed to honor these two
marginal distributions. Figure 8 shows four conditional dis-
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tributions or slices through the smoothed scatterplot. The
final smoothed distribution is constrained to the marginal
distributions, 11 by 11 bivariate quantiles, and a measure of
smoothness. The computer time for this smoothing exercise
was 303 seconds (about 5 minutes) on a Silicon Graphics
Indy workstation.

5. REMARKS AND CONCLUSIONS

Accurate prediction of petroleum-reservoir performance
requires representative numerical models of the spatial dis-
tributions of porosity ¢ and permeability K. The main idea
behind geostatistical simulation techniques is to build nu-
merical models that honor all of the available information.
In addition to location-dependent well log and core data,
geostatistical simulation techniques require global statistics
such as the histogram of porosity, the histogram of perme-
ability, and the scatterplot of porosity and permeability.

Typically, a geostatistical model may contain 1 to 100
million geological modeling cells. Were the data available,
the histogram of 1-100 million ¢ or K values would not
show the sawtoothlike spikes and gaps that appear in most
sample histograms. For this reason, the sample histogram
should be smoothed. An algorithm, based on simulated an-
nealing, has been developed to smooth data histograms con-
strained to important summary statistics (data limits, mean,
variance, specified quantiles, and measures of smoothness).

Bivariate histograms require many more classes to be
defined than the univariate case. The smoothing algorithm
developed for the univariate case has been extended to the
bivariate case. Additional constraints include the linear cor-
relation coefficient and consistency with both marginal dis-
tributions.

It is recommended that the histograms (possibly with
declustering weights) of ¢ and K be smoothed prior to
building stochastic models. Similarly, and more impor-
tantly, it is recommended that the scatterplot of porosity
and permeability be smoothed prior to stochastic simula-
tion.
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